Computation with mechanically coupled springs for compliant robots
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Abstract—We introduce a simple model of human’s muscu-
loskeletal system to identify the computation that a compliant
physical body can achieve. A one-joint system driven by actua-
tion of the springs around the joint is used as a computational
device to compute the temporal integration and nonlinear
combination of an input signal. Only a linear and static readout
unit is needed to extract the output of the computation. The
results of computer simulations indicate that the network of
mechanically coupled springs can emulate several nonlinear
combinations which need temporal integration. The simulation

readout, the proposed setup is able to adapt itself in order to
emulate such complex computations. For the construction of
these networks, Hauset al. used randomly chosen masses

and connected them with randomly chosen (regarding their
physical properties) springs. The input signal was introduced
to the system in form of forces and the linear output was
implemented as a weighted sum of all actual spring lengths
(i.e, the state of this dynamic system). The corresponding

output weights were then adapted in order to emulate a

with a two-joint system also shows that, thanks to mechanical X "
desired computation.

connection between the joints, a distant part of a compliant
body can serve as a computational device driven by the indirect
input. Finally, computational capability of antagonistic muscles
and information transfer through mechanical couplings are
discussed.

Since they aimed at constructing the theoretical foundation
of morphological computation, the structure of springs in
the network has not been taken into account. For animals or
animal-like robots, however, constraints inherent in physi-
[. INTRODUCTION cal and mechanical structures are inevitable. For example,

Effectively constructing a computational system is ondhuscle fibers of human and other animals, which have
of the important problems in robotics research because tR@nlinear properties, are subject to constraints in terms of
amount of computation continues to increase for a robot t§€ir arrangement: they are basically placed around bones,
be engaged in multiple tasks. In the state of the art robotf¥Nich are rigid, in parallel and mechanically coupled to each
systems such as [1], a precise joint-angle control architectuPte" throggh a joint betwgen thg bones. Although the spring
has been selected with a rigid body structure and high torqlﬁ‘@twork Wlth.SUCh constraints might shlow lower performance
actuators. Although this control architecture allowed a robdtf computation than the general spring network proposed
to achieve multiple tasks, it has required much computationd] [7]: it should still have computational power to some ex-
cost because it has to control every joint angle precisely lent. _Furthermore, the mech_anlcal constraints might pr_owde
all times. However, recent studies inspired from biological!S With & new way to exploit the body as a computational
systems have reported that a compliant physical body, Whi&gwce. Therefor(_e, the |d§nt|f|cat|on of computational power
often has nonlinear properties, enables achieving sevef8ithe network will shed light on how much complex signal
tasks such as locomotion with simpler controllers [2], [3]C&" P& computed through a compliant body. This will also
[4]. This indicates that a part of computation for control of€lP Us design controller embedded into the body.

movements can be offloaded to the body, or morphological |n the following, we firstly introduce a one-joint system
and material properties, as described by the concept @fiven by actuation of the springs that are connected around
morphological computation [5], [6]. the joint as a simple model of human’s musculoskeletal
Despite a great deal of evidence, however, so far thegystem based on the theoretical model of morphological
has been no rigorous theoretical basis for this phenomenasmputation proposed in [7]. In the system, the history of
In this context, Hauseet al. proposed a theoretical model an input signal is memorized as a sequence of the spring
of morphological computation to understand the capabilitie®iovements. The nonlinear combination of temporally inte-
and limitations from a mathematical point of view [7]. grated input information is computed by a linear and static
They applied the concept of reservoir computing [8] tqeadout unit. Secondly, the emulation of several different
random, recurrent networks of mass-spring systems. Th@pnlinear combinations is tested to evaluate the performance
demonstrated that such networks, which are used in order o the computational capability. We show, through com-
mimic real physical bodies, can be used to emulate complgyuter simulations, that a same network of mechanically
computations, which include the nonlinear combination ofoupled springs can emulate several nonlinear combinations
temporally integrated information. The networks, althouglyf temporally integrated input information simultaneously
randomly constructed, stay fixed (as a real body doesgven though we use linear and static readouts. After that,
and only by adding a changeable (i.e., learnable) lineati computer simulation on a two-joint system, we also show
with thethat, thanks to mechanical .connections between the joints,.the
switzerland N€twork can emulate nonlinear and temporal transformation
even when it does not receive input information directly.
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[I. MUSCULOSKELETAL SYSTEM AS A COMPUTATIONAL  y(t) = Zjvv:lwout,jlj(t), where, w,,: ; and;(t) indicate
DEVICE the output weight forj-th spring and the length of the

Fig. 1 shows a simple model of a musculoskeletal systefPring at timet, respectively. While we randomly choose
used in the paper. Two cylindrical rigid objects (links) areWi» @nd the coefficients of the springs, the output weights
connected through a ball joint. The weight of each link is¥ou: aré updated so that the system reproduces a desired
0.5 [kg]. The upper link is fixed, while the lower link moves signal. For learning we collect the lengths of every single
based on the activations @¥ springs, which also connect SPringl;(¢) at every time stegl = 1,2,---, M)inaM xN
these links. For the sake of simplicity, the springs are placd@atrix, S. The desired signal(¢) is also stored as a vector
with equal spacing around the perimeter of the linkgh d = (d(1),d(2),---,d(M))". Finally, the optimal output

spring is placed afr cos6, rsin ) (see Fig. 1), where = Weights w;,, are calculated byw;,, = S*d, whereS™
0.05 and§ = 2 <L, Their dynamics are given by: stands for the (Moore-Penrose) pseudo-inverse.oNote
that the same procedure can be applied in the case of multiple
Ty = (1) inputs and/or multiple outputs.
Ty = —kix1— ]{?3.%':13 —dixo — d3,’L‘§ +u (2)

where, z; stands for difference between natural lenggh
and current lengthi of a spring. We sety = 0.1 [m]. =2 is
the derivative ofx; computed by(z, (t) — x1(t — t))/dt
with 6t = 1 [ms] and « shows an external force to the

Length
1(t)

spring. A positive value of: indicates a contracting force Input NR"“““‘ Output
applied to the spring, while a negative one stretches it. ﬂ =)

To allow diversity of the system, the parameters of each
spring &1, di, k3, andds) are randomly drawn from defined
huge ranges: for each spring; and d; are drawn from
[1,0x10%,1.0x10°] (log-uniform distribution) and:3 andd;

are drawn fronf5.0x 102, 1.0 x 10'3] (uniform distribution).
We limit the movement of each spring in a direction wheresig. 2.  An overview of information processing in the system. The input
the spring lifts up or down the lower link to avoid twist signal I (¢) multiplied with input weightsw;,, is applied to several springs
of the lower link. The simulation of physical dynamics .isgjnfxéfer;fllgg;ﬁ";(ft)S'pgggsor‘:\t&‘:izﬁ’é;hﬁitﬁyzh‘igglff)wzgcrfgoilfevc\’/hﬁ‘;a
carried out using ODE (Open Dynamic Engine) (R. Smithw;,, is randomly set and then fixetvout is adapted in order to emulate
http://www.ode.org/ode.html). a desired signal.

Ill. EXPERIMENTS

Spring /§§

Ball joint

A. The performance for nonlinear transformation

0.5[m] First, we tested whether this system has computational
capability in terms of the emulation of nonlinear combination
that needs temporal integration, following the procedure used

: in Hauseret al. [7]. Hereafter, we refer to a nonlinear

e x combination that needs temporal integration as a nonlinear

filter. The tasks for the system were to emulate three different

nonlinear filters simultaneously. As the first and second

Fig. 1. A simple model of a musculoskeletal system. The lower link ijjters. we used 2nd order nonlinear dynamic system and
connected with the upper one by a ball joint and multiple springs. ' . .
10th order one, respectively given by:

Link

The information processing based on the musculoskeletal y(k+1) = 0.4y(k) +0.4y(k)y(k — 1)
model is shown in Fig. 2. A single input sign&(t) at time +0.0048u> (k) + 0.1, (3)
stept is transformed into external forcas applied toN;, 9
springs(V;, < N), which are chosen randomly, by multi- yk+1) = 0.3y(k)+ 0,05y(/€)(z y(k —1))
plying input weightsw;,,, which are randomly drawn from i—0
[-1.0,1.0]. The lower link moves, depending on the actua- +0.06u(k — 9)u(k) + 0.1, (4)

tion of springs caused by their own dynamics and the external

forces. The state of the model is measured as the lengthsvdfere,u(k) and y(k) stand for the input and the output of
the springs. A linear and static readout unit computes dhe system at time step.

output of the mode}(¢) based on the lengths of all springs Volterra operator consisting of a quadratic term with a
with output weightsw .t = (Wout 1, Wout,2,* s Wour ) - Gaussian kernel was selected as the third filter. For the



simulation, the output was computed with discrete expressid*nl2 ‘ _input u(t)
of \olterra operator given by: -

0.0
200 200 L
y(k) = Z Z 0.04h(71, 72)u(k — 71)u(k — 72) (5) ~0.2 1000 2000 3000 2000 5000
7'1:0 T2:0 B
. 0200 2nd order time series
where, u(k) stands for the input of the system at time i [ ‘ ‘ et
step £ and h is Gaussian kernel withu; = puo = o100FA/ ¥ izfﬁiz‘l‘;iz”y“‘—
100 [ms] and o7y = o2 = 50 [ms], i.e., h(ry,72) = 0185 T 1
exp (11 — p1)?/20% + (2 — p2)?/203). The input signal ***% 1000 2000 3000 2000 5000
u(t) at tlme stept.was computed .by multiplying qutputs c Loth order time serics
of three sine functions that have different frequencies: 0.28f ‘ ‘ e

. . . 0.24: — system outputE
u(t) = 0.2 - sin(27 f1t) - sin(27 fot) - sin(27 f5t), (6) .20l ﬂ I A !\A A}\ — without body
O.IGLJWAU ST AVATIV| P v o o oo o Wod Wi |

where, we seff; = 2, f, = 3.1, and f3 = 4.2 [Hz]. 0 1000 2000 3000 4000 5000
We ran400 simulations with different networks which are p
randomly made at the defined range (see in Section Il). A3°r;
each simulation, external forces computed by the input signal?°|
were applied to randomly-chosen four springs out of 162y
springs. Hauseet al. [7] showed that a same morphological®°°° To00 2000 3000 4000 5000
structure can be used for different tasks simultaneously (i.e. time [ms}
multiplexing). Therefore, a same network for learning ofig. 3. The performance of the three nonlinear combination and temporal
the three different filters is used to show the multiplexingntegration tasks. The top figure shows the inp(#). The other three figures

show the performances of the 2nd order system, the 10th order system, and
property of the network. We collectéd, 000 samples of the the \Volterra series. The red line is the target trajectory and the blue line is

input signal, the lengths of all springs, and the correspondinge output of the system. The green line indicates the output computed by
desired outputs after initiad, 000 samples were discarded simple linear regression on the raw input.
as transients. After learning, the differences between the
desired outputs and the emulated outputs were collected 12707
during 5,000 steps, and then their mean squared errors
(MSEs) were computed to evaluate the performance of the
acquired readout units. The averages of the MSEs for the
three filters, the 2nd order system, the 10th order system,
and the \olterra series, werz55 x 1074, 1.28 x 1073, o 0 10 150 200 250 30 30 400
and 7.09 x 1073, respectively with standard deviations, a0 10th order time series - result
1.98 x107%,9.17 x 10~%, and7.50 x 1075, Fig. 3 shows the
result of the network with the best performance. To clarify
the contribution of the body structure to the computation,
we compared the results of our system with the ones of ]
simple linear regression on the raw input datsVe can 020 o T 20 2o 300 30 @00
see that our system shows a much higher performance than e
one of the linear regression. It emulated the 2nd and 10tiy. 4. The mean squared errors for the 2nd order integration task and the
order systems accurately, while it failed in the emulation OifOth or?er cla(ne achieved B0 random networks. Each index corresponds
\olterra time series. Since the general model proposed bci/a1 network
Hauseret al. [7] showed the high performance of the three
filters, the mechanical constraints in our system prevent the
computational capabilities of the system. Nevertheless, it c@ases except for a few networks that show much lower
still emulate the 2nd and 10th order filters. performance. We compared the networks that show the best
Note that the large standard deviations of the perfoPerformance and the worst one for the 2nd order task in terms
mances of the 2nd and 10th order systems are caused @fythe distribution of input weightsv;, to investigate the
a few outliers. To show this evidence clearly, we sortedelationship betweeen the performance and the effect of input
400 networks according to their MSEs for the 2nd andsignal on the behavior of the network. Fig. 5 shows the value
10th order filters (Fig. 4). As can be seen, most of thef the input weight at each position in the networks with the

networks show high performances in the 2nd and 10th ordbgst performance and the worst one. The value represents the
scaling factor of the input signal. Given positive value of the
We used a linear reg_rESSIOn with two Welghﬁﬂ, for the a_CtUaI |npUt |nput Slgnall a pOS|t|Ve Welght generates a Contracung force
u(t) andwsy to learn a bias. Hence, the resulting output at time ste@s : . . .
yLr(t) = wiu(t) + wa. The two weights were adapted to emulate thel® & SPring while a negative one prqwdes aforce to ;tretch the
desired integrations. spring. As we can see, the directions of the applied forces
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X102 2nd order time series

are clearly separated in the best performance case so that
the input signal can drive the system in a manner similar
to the way antagonistic muscles are driven. On the other
hand, they are conflictive in the worst performance case. This
confliction prevents the lower link moving enough to reflect s . s R
the input signal. As a result, the performance becomes lower. # of springs
Therefore, the system has robust computational capabilities sopde” 10th order time series
as long as its movement reflects the input signal. I

Best performance Worst performance
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180 o° Fig. 6. The performance of the 2nd order and 10th order integrations for
different number of springs.
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Fig. 5. Distributions of the input weights to compute external force on i ; -
the networks with the best performance and the worst one. The angle 105 o : :
corresponds t@ shown in Fig. 1. Given a positive input, positive values ball hinge passive
produce forces to contract the corresponding springs while negative ones 107 ‘ 10th order time series
stretch them. External forces are not applied to other springs.
102k =
8 -
. ) 10° ¢ == %
B. The influence of complexity of the body on the perfor-

-4 i i i
mance 10 ball hinge passive

The number of nonlinear elements will affect the perforgig. 7. Boxplots of mean squared errorssfo different networks with
mance of the computation although we fixed it above. The ball joint, ones with a hinge joint, and ones with a passive joint (see
fewer elements the system has, the lower the performani‘?é?“on IlI-D). The vertical axis in each figure is in logarithmic scale.
will be. Therefore, we examined to which extent the perfor-
mance depends on the number of springs.

We used the same setting as the one in the previousodeled not by ball joints but by joints that can rotate
experiment except that we changed the number of springsly in one axis like a hinge. As a next step, therefore,
from one to 16. For each configuration of springs, we rawe investigated to which extent the system with this further
400 random simulations with different spring properties. Theonstraint can preserve the computational capabilities.
number of the springs to which external forces are applied We ran400 simulations, following the same procedure as
was set to one itV < 3 and two if N = 4 or N = 5. the one in the experiment of section Ill-A except that we
In other cases, it was determined by roundRigt of all replaced a ball joint in the model with a hinge joint. The
springs. The performance was evaluated with MSEs for thgerformance of the system was evaluated for the 2nd and
2nd and 10th order filters. 10th order filters in the same way as the previous experiment:

Fig. 6 shows the average and standard deviation of MSk& computed the MSEs between the desired outputs and the
for the tasks on each configuration. In the cases of feweutputs by the adapted readout units.
springs, the averages of MSEs for both tasks were muchThe distributions of the MSEs for each task on the
higher than ones in the case of 16 springs. The performannetworks with a ball joint and a hinge are displayed by the
improved from the cases of six springs drastically and thelmoxplots in Fig. 7. As one can see, in the case of a hinge
leveled off after ten springs. As a result, it turned out that tejoint, the number of the networks that have low performance
springs have already the computational capability to compuircreases because, due to limited movement of the joint,
the 10th order integration. it is difficult to construct a network that reflects the input

] ) o signal. Interestingly, however, several networks with a hinge
C. The influence of mechanical limitation on the perforygin; siill showed smaller MSEs for the 2nd and 10th order
mance filters than the medians of networks with a ball joint. The

We have showed that even spring networks with a mesomparison between distributions ef;,, in the networks
chanical constraint, that is, a ball joint, have computationalith the best performance or the worst one (Fig. 8) indicates
capabilities to emulate nonlinear filters in the previous exthat, even when the axis of the rotation on a joint is limited,
periments. Many joints in animal or animal-like robot area spring network can have computational capabilities if the



movement of the link reflects the input information.
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~0.16 -0.08 000 008 016 024 032 040 Fig. 9. An overview of the information processing in a multi-joint system
with mechanically-coupled springs. The input signals multiplied with input

Fig. 8. Distributions of input weights to compute external forces orweightsw;,, are applied to some springs around the upper joint as external
the networks with the best performance and the worst one. The andierces. The output of the system is computed as a sum of all length of
corresponds t@ shown in Fig. 1. The arrows show the direction of thesprings around the lower joint multiplied with output weights,;.
movement of the system. In the best performance case, the positive and
negative values work in a manner similar to the way antagonistic muscles
work, while only negative valves drive the system in the worst performance.

spring in Fig 9). Note that the input signal is not directly
) ) o . applied to springs that are used to compute the outputs of the
D. The information transmission through mechanical cougygtem. The input information was transferred to the springs
pling around the lower joint through the physical and mechanical
The previous experiments have suggested that a netwatnnection. The passive movement of the springs was used
of multiple springs can serve as a computational device if it®9 emulate the nonlinear filter.
behavior can reflect input information. This implies that, even We ran400 simulations, following the procedure described
when the network cannot receive an input signal directly, ih section IlI-A. The MSEs between desired outputs and
can emulate nonlinear combination of temporally integrategutputs of the adapted readout units were computed for the
input information if its movement is passively affected by thend and 10th order system tasks. The averages of MSEs for
input signal. In a multi-joint system that includes passiveéhe 2nd and 10th order cases wéré2 x 103 and1.49 x
parts and actively-actuated ones, a passive part is affectggt-2, respectively with standard deviatiop28 x 10~—* and
by the actuation of an active part through a physical link2.52x10~3. We shows the distributions of the MSEs for each
If the passive part can emulate nonlinear combination arglsk and the result of the network with the best performance
temporal integration of the indirect input signal, it can servén Fig. 8 and Fig. 10, respectively. The network show lower
to generate an input-dependent signal to an adjoining pgsérformance than ones of one-joint cases. However, we can
which should be actuated. This might allow us to regardee that a spring network can emulate nonlinear filters by
passive elements in a robotic system as a local controlleransmitting the input signal through mechanical connection,
Therefore, we investigated whether a spring network th@ompared with the result of simple linear regression shown
receive the indirect input through mechanical connection can Fig. 3.
emulate nonlinear filters.
We used a two-joint model in whiclV (= 16) springs are IV. DISCUSSION AND CONCLUSION
placed with equal spacing around the perimeter of the links In classical robotic systems, redundant configuration of the
connected by each joint (Fig 9). While the parameters of thgctuators were avoided to achieve precise control. However,
springs around lower joint are randomly set at the same ran@ehas been reported that such properties make the control
as the ones on the previous experiments, the parameterstgdks easier. A bi-articular muscle is a typical example
the springs around upper joint are set so that they are affectgdcause it is suggested that they play an important role in
by input signals easilyk; andd; are randomly drawn from stiffness control [9] and jumping [4]. In biological systems,
[1,0 x 10%,1.0 x 10°] and k3 and ds are randomly drawn each joint is controlled by the actuation of a lot of muscle
from [5.0 x 10", 1.0 x 10'?]. The same input signal shown fibers, which are well-arranged in parallel or obliquely to
by Eq. (6) was applied for randomly-chosen four springshe long axis of the muscle [10]. The analogy between
around the upper joint with input weights. Since it turnsnusculoskeletal system and our system suggests that the re-
out that the computational performance depends much @undant configuration of biological muscles has a potential as
the distribution of the input weights, weight;,, ; for i-th  local computational resource. Furthermore, interestingly, the
spring was randomly drawn from: system showed the best performance when the input signal
Win.: € [0.0,1.0] if NJ/2>i was applied_ o) _that it can Qrive.the sysFem ir_l antagor]istic
way. This might imply that biological configuration has high
computational capability.
The output of the system was computed as a sum of the However, we found, in the first experiment, that the current
weighted lengths of all springs around the lower joint (bluestructure cannot emulate Volterra series, while, theoretically

Win; € [—1.0,0.0] otherwise.



Input signals

0.20r output to the system instead of actual input. In the context

of reservoir computing, it has been already reported that this
kind of feedback loop enables a network to store persist
memory such as periodic pattern [11], [12]. The introduction
of feedback loop will allow the system to perform periodic
movement with computing its own control signal.

In this paper, we demonstrated that the network of me-
chanically coupled springs inspired by musculoskeletal sys-
tem has computational capability to emulate different nonlin-
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0.185} ear combinations of temporally integrated information. Such
01805 - 500 Soo0 T 050 Sgoo network was still able_to. mgintain computational capability
even when a further limitation on degrees of freedom was
10th order time series added to the system. We also showed that, in experiment
e R e output on a two-joint system, thanks to mechanical connection
o290 ! between the joints, a distant part of a compliant body
9-208 can serve as a computational device driven by the indirect
0.16F input. These results suggested that each joint in compliant
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physical body has a potential as computational device. We
A f ol § | ) will introduce a feedback element into our system to design

Fig. 10. The performance of nonlinear and temporal integration tasks wi ;

the two-joint setup. The top figure shows the inpuft), which consisted 15 pattern generator that can perform meaningful movement

of three sinusoidal functions. The other two figures show the performanc¥¥ith computing its own control signal. Experiments with real

of the 2nd and 10th order filters, respectively. In each figure, the red line ipbots will be also conducted to verify the results.
a target trajectory and the blue line is the output of the system.
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