
Computation with mechanically coupled springs for compliant robots

Hidenobu Sumioka, Helmut Hauser, and Rolf Pfeifer

Abstract— We introduce a simple model of human’s muscu-
loskeletal system to identify the computation that a compliant
physical body can achieve. A one-joint system driven by actua-
tion of the springs around the joint is used as a computational
device to compute the temporal integration and nonlinear
combination of an input signal. Only a linear and static readout
unit is needed to extract the output of the computation. The
results of computer simulations indicate that the network of
mechanically coupled springs can emulate several nonlinear
combinations which need temporal integration. The simulation
with a two-joint system also shows that, thanks to mechanical
connection between the joints, a distant part of a compliant
body can serve as a computational device driven by the indirect
input. Finally, computational capability of antagonistic muscles
and information transfer through mechanical couplings are
discussed.

I. INTRODUCTION

Effectively constructing a computational system is one
of the important problems in robotics research because the
amount of computation continues to increase for a robot to
be engaged in multiple tasks. In the state of the art robotic
systems such as [1], a precise joint-angle control architecture
has been selected with a rigid body structure and high torque
actuators. Although this control architecture allowed a robot
to achieve multiple tasks, it has required much computational
cost because it has to control every joint angle precisely at
all times. However, recent studies inspired from biological
systems have reported that a compliant physical body, which
often has nonlinear properties, enables achieving several
tasks such as locomotion with simpler controllers [2], [3],
[4]. This indicates that a part of computation for control of
movements can be offloaded to the body, or morphological
and material properties, as described by the concept of
morphological computation [5], [6].

Despite a great deal of evidence, however, so far there
has been no rigorous theoretical basis for this phenomenon.
In this context, Hauseret al. proposed a theoretical model
of morphological computation to understand the capabilities
and limitations from a mathematical point of view [7].
They applied the concept of reservoir computing [8] to
random, recurrent networks of mass-spring systems. They
demonstrated that such networks, which are used in order to
mimic real physical bodies, can be used to emulate complex
computations, which include the nonlinear combination of
temporally integrated information. The networks, although
randomly constructed, stay fixed (as a real body does),
and only by adding a changeable (i.e., learnable) linear

H. Sumioka, H. Hauser, and R. Pfeifer are with the
Department of Informatics University of Zurich, Switzerland
{sumioka/hauser/pfeifer }@ifi.uzh.ch

readout, the proposed setup is able to adapt itself in order to
emulate such complex computations. For the construction of
these networks, Hauseret al. used randomly chosen masses
and connected them with randomly chosen (regarding their
physical properties) springs. The input signal was introduced
to the system in form of forces and the linear output was
implemented as a weighted sum of all actual spring lengths
(i.e, the state of this dynamic system). The corresponding
output weights were then adapted in order to emulate a
desired computation.

Since they aimed at constructing the theoretical foundation
of morphological computation, the structure of springs in
the network has not been taken into account. For animals or
animal-like robots, however, constraints inherent in physi-
cal and mechanical structures are inevitable. For example,
muscle fibers of human and other animals, which have
nonlinear properties, are subject to constraints in terms of
their arrangement: they are basically placed around bones,
which are rigid, in parallel and mechanically coupled to each
other through a joint between the bones. Although the spring
network with such constraints might show lower performance
of computation than the general spring network proposed
in [7], it should still have computational power to some ex-
tent. Furthermore, the mechanical constraints might provide
us with a new way to exploit the body as a computational
device. Therefore, the identification of computational power
in the network will shed light on how much complex signal
can be computed through a compliant body. This will also
help us design controller embedded into the body.

In the following, we firstly introduce a one-joint system
driven by actuation of the springs that are connected around
the joint as a simple model of human’s musculoskeletal
system based on the theoretical model of morphological
computation proposed in [7]. In the system, the history of
an input signal is memorized as a sequence of the spring
movements. The nonlinear combination of temporally inte-
grated input information is computed by a linear and static
readout unit. Secondly, the emulation of several different
nonlinear combinations is tested to evaluate the performance
of the computational capability. We show, through com-
puter simulations, that a same network of mechanically
coupled springs can emulate several nonlinear combinations
of temporally integrated input information simultaneously
even though we use linear and static readouts. After that,
in computer simulation on a two-joint system, we also show
that, thanks to mechanical connections between the joints, the
network can emulate nonlinear and temporal transformation
even when it does not receive input information directly.



II. M USCULOSKELETAL SYSTEM AS A COMPUTATIONAL

DEVICE

Fig. 1 shows a simple model of a musculoskeletal system
used in the paper. Two cylindrical rigid objects (links) are
connected through a ball joint. The weight of each link is
0.5 [kg]. The upper link is fixed, while the lower link moves
based on the activations ofN springs, which also connect
these links. For the sake of simplicity, the springs are placed
with equal spacing around the perimeter of the links:i-th
spring is placed at(r cos θ, r sin θ) (see Fig. 1), wherer =
0.05 andθ = 2π i−1

N . Their dynamics are given by:

ẋ1 = x2 (1)

ẋ2 = −k1x1 − k3x
3
1 − d1x2 − d3x

3
2 + u (2)

where, x1 stands for difference between natural lengthl0
and current lengthl of a spring. We setl0 = 0.1 [m]. x2 is
the derivative ofx1 computed by(x1(t) − x1(t − δt))/δt
with δt = 1 [ms] and u shows an external force to the
spring. A positive value ofu indicates a contracting force
applied to the spring, while a negative one stretches it.
To allow diversity of the system, the parameters of each
spring (k1, d1, k3, andd3) are randomly drawn from defined
huge ranges: for each spring,k1 and d1 are drawn from
[1, 0×104, 1.0×106] (log-uniform distribution) andk3 andd3

are drawn from[5.0×1012, 1.0×1013] (uniform distribution).
We limit the movement of each spring in a direction where
the spring lifts up or down the lower link to avoid twist
of the lower link. The simulation of physical dynamics is
carried out using ODE (Open Dynamic Engine) (R. Smith,
http://www.ode.org/ode.html).

Fig. 1. A simple model of a musculoskeletal system. The lower link is
connected with the upper one by a ball joint and multiple springs.

The information processing based on the musculoskeletal
model is shown in Fig. 2. A single input signalI(t) at time
stept is transformed into external forcesu applied toNin

springs(Nin ≤ N), which are chosen randomly, by multi-
plying input weightswin, which are randomly drawn from
[−1.0, 1.0]. The lower link moves, depending on the actua-
tion of springs caused by their own dynamics and the external
forces. The state of the model is measured as the lengths of
the springs. A linear and static readout unit computes an
output of the modely(t) based on the lengths of all springs
with output weightswout = (wout,1, wout,2, · · · , wout,N )T :

y(t) =
∑N

j=1 wout,j lj(t), where,wout,j and lj(t) indicate
the output weight forj-th spring and the length of the
spring at timet, respectively. While we randomly choose
win and the coefficients of the springs, the output weights
wout are updated so that the system reproduces a desired
signal. For learning we collect the lengths of every single
springlj(t) at every time step(t = 1, 2, · · · ,M) in a M×N
matrix, S. The desired signald(t) is also stored as a vector
d = (d(1), d(2), · · · , d(M))T . Finally, the optimal output
weights w∗

out are calculated byw∗
out = S+d, where S+

stands for the (Moore-Penrose) pseudo-inverse ofS. Note
that the same procedure can be applied in the case of multiple
inputs and/or multiple outputs.

Fig. 2. An overview of information processing in the system. The input
signalI(t) multiplied with input weightswin is applied to several springs
as external forcesu(t). The output of the systemy(t) is computed as a
sum of all length of springs multiplied with output weightswout. While
win is randomly set and then fixed,wout is adapted in order to emulate
a desired signal.

III. E XPERIMENTS

A. The performance for nonlinear transformation

First, we tested whether this system has computational
capability in terms of the emulation of nonlinear combination
that needs temporal integration, following the procedure used
in Hauser et al. [7]. Hereafter, we refer to a nonlinear
combination that needs temporal integration as a nonlinear
filter. The tasks for the system were to emulate three different
nonlinear filters simultaneously. As the first and second
filters, we used 2nd order nonlinear dynamic system and
10th order one, respectively given by:

y(k + 1) = 0.4y(k) + 0.4y(k)y(k − 1)
+0.0048u3(k) + 0.1, (3)

y(k + 1) = 0.3y(k) + 0.05y(k)(
9∑

i=0

y(k − i))

+0.06u(k − 9)u(k) + 0.1, (4)

where,u(k) andy(k) stand for the input and the output of
the system at time stepk.

Volterra operator consisting of a quadratic term with a
Gaussian kernel was selected as the third filter. For the



simulation, the output was computed with discrete expression
of Volterra operator given by:

y(k) =
200∑

τ1=0

200∑
τ2=0

0.04h(τ1, τ2)u(k − τ1)u(k − τ2) (5)

where, u(k) stands for the input of the system at time
step k and h is Gaussian kernel withµ1 = µ2 =
100 [ms] and σ1 = σ2 = 50 [ms], i.e., h(τ1, τ2) =
exp ((τ1 − µ1)2/2σ2

1 + (τ2 − µ2)2/2σ2
2). The input signal

u(t) at time stept was computed by multiplying outputs
of three sine functions that have different frequencies:

u(t) = 0.2 · sin(2πf1t) · sin(2πf2t) · sin(2πf3t), (6)

where, we setf1 = 2, f2 = 3.1, andf3 = 4.2 [Hz].
We ran400 simulations with different networks which are

randomly made at the defined range (see in Section II). In
each simulation, external forces computed by the input signal
were applied to randomly-chosen four springs out of 16
springs. Hauseret al. [7] showed that a same morphological
structure can be used for different tasks simultaneously (i.e.
multiplexing). Therefore, a same network for learning of
the three different filters is used to show the multiplexing
property of the network. We collected10, 000 samples of the
input signal, the lengths of all springs, and the corresponding
desired outputs after initial5, 000 samples were discarded
as transients. After learning, the differences between the
desired outputs and the emulated outputs were collected
during 5, 000 steps, and then their mean squared errors
(MSEs) were computed to evaluate the performance of the
acquired readout units. The averages of the MSEs for the
three filters, the 2nd order system, the 10th order system,
and the Volterra series, were2.55 × 10−4, 1.28 × 10−3,
and 7.09 × 10−3, respectively with standard deviations,
1.98×10−4, 9.17×10−4, and7.50×10−5. Fig. 3 shows the
result of the network with the best performance. To clarify
the contribution of the body structure to the computation,
we compared the results of our system with the ones of
simple linear regression on the raw input data1. We can
see that our system shows a much higher performance than
one of the linear regression. It emulated the 2nd and 10th
order systems accurately, while it failed in the emulation of
Volterra time series. Since the general model proposed by
Hauseret al. [7] showed the high performance of the three
filters, the mechanical constraints in our system prevent the
computational capabilities of the system. Nevertheless, it can
still emulate the 2nd and 10th order filters.

Note that the large standard deviations of the perfor-
mances of the 2nd and 10th order systems are caused by
a few outliers. To show this evidence clearly, we sorted
400 networks according to their MSEs for the 2nd and
10th order filters (Fig. 4). As can be seen, most of the
networks show high performances in the 2nd and 10th order

1We used a linear regression with two weights,w1 for the actual input
u(t) andw2 to learn a bias. Hence, the resulting output at time stept was
yLR(t) = w1u(t) + w2. The two weights were adapted to emulate the
desired integrations.

A
0.2

0.2

D

C

B

Fig. 3. The performance of the three nonlinear combination and temporal
integration tasks. The top figure shows the inputu(t). The other three figures
show the performances of the 2nd order system, the 10th order system, and
the Volterra series. The red line is the target trajectory and the blue line is
the output of the system. The green line indicates the output computed by
simple linear regression on the raw input.

Fig. 4. The mean squared errors for the 2nd order integration task and the
10th order one achieved by400 random networks. Each index corresponds
to a network.

cases except for a few networks that show much lower
performance. We compared the networks that show the best
performance and the worst one for the 2nd order task in terms
of the distribution of input weightswin to investigate the
relationship betweeen the performance and the effect of input
signal on the behavior of the network. Fig. 5 shows the value
of the input weight at each position in the networks with the
best performance and the worst one. The value represents the
scaling factor of the input signal. Given positive value of the
input signal, a positive weight generates a contracting force
to a spring while a negative one provides a force to stretch the
spring. As we can see, the directions of the applied forces



are clearly separated in the best performance case so that
the input signal can drive the system in a manner similar
to the way antagonistic muscles are driven. On the other
hand, they are conflictive in the worst performance case. This
confliction prevents the lower link moving enough to reflect
the input signal. As a result, the performance becomes lower.
Therefore, the system has robust computational capabilities
as long as its movement reflects the input signal.

Best performance Worst performance

Fig. 5. Distributions of the input weights to compute external force on
the networks with the best performance and the worst one. The angle
corresponds toθ shown in Fig. 1. Given a positive input, positive values
produce forces to contract the corresponding springs while negative ones
stretch them. External forces are not applied to other springs.

B. The influence of complexity of the body on the perfor-
mance

The number of nonlinear elements will affect the perfor-
mance of the computation although we fixed it above. The
fewer elements the system has, the lower the performance
will be. Therefore, we examined to which extent the perfor-
mance depends on the number of springs.

We used the same setting as the one in the previous
experiment except that we changed the number of springs
from one to 16. For each configuration of springs, we ran
400 random simulations with different spring properties. The
number of the springs to which external forces are applied
was set to one ifN ≤ 3 and two if N = 4 or N = 5.
In other cases, it was determined by rounding25% of all
springs. The performance was evaluated with MSEs for the
2nd and 10th order filters.

Fig. 6 shows the average and standard deviation of MSEs
for the tasks on each configuration. In the cases of fewer
springs, the averages of MSEs for both tasks were much
higher than ones in the case of 16 springs. The performance
improved from the cases of six springs drastically and then
leveled off after ten springs. As a result, it turned out that ten
springs have already the computational capability to compute
the 10th order integration.

C. The influence of mechanical limitation on the perfor-
mance

We have showed that even spring networks with a me-
chanical constraint, that is, a ball joint, have computational
capabilities to emulate nonlinear filters in the previous ex-
periments. Many joints in animal or animal-like robot are

Fig. 6. The performance of the 2nd order and 10th order integrations for
different number of springs.

Fig. 7. Boxplots of mean squared errors of400 different networks with
a ball joint, ones with a hinge joint, and ones with a passive joint (see
section III-D). The vertical axis in each figure is in logarithmic scale.

modeled not by ball joints but by joints that can rotate
only in one axis like a hinge. As a next step, therefore,
we investigated to which extent the system with this further
constraint can preserve the computational capabilities.

We ran400 simulations, following the same procedure as
the one in the experiment of section III-A except that we
replaced a ball joint in the model with a hinge joint. The
performance of the system was evaluated for the 2nd and
10th order filters in the same way as the previous experiment:
we computed the MSEs between the desired outputs and the
outputs by the adapted readout units.

The distributions of the MSEs for each task on the
networks with a ball joint and a hinge are displayed by the
boxplots in Fig. 7. As one can see, in the case of a hinge
joint, the number of the networks that have low performance
increases because, due to limited movement of the joint,
it is difficult to construct a network that reflects the input
signal. Interestingly, however, several networks with a hinge
joint still showed smaller MSEs for the 2nd and 10th order
filters than the medians of networks with a ball joint. The
comparison between distributions ofwin in the networks
with the best performance or the worst one (Fig. 8) indicates
that, even when the axis of the rotation on a joint is limited,
a spring network can have computational capabilities if the



movement of the link reflects the input information.

Best performance Worst performance

Fig. 8. Distributions of input weights to compute external forces on
the networks with the best performance and the worst one. The angle
corresponds toθ shown in Fig. 1. The arrows show the direction of the
movement of the system. In the best performance case, the positive and
negative values work in a manner similar to the way antagonistic muscles
work, while only negative valves drive the system in the worst performance.

D. The information transmission through mechanical cou-
pling

The previous experiments have suggested that a network
of multiple springs can serve as a computational device if its
behavior can reflect input information. This implies that, even
when the network cannot receive an input signal directly, it
can emulate nonlinear combination of temporally integrated
input information if its movement is passively affected by the
input signal. In a multi-joint system that includes passive
parts and actively-actuated ones, a passive part is affected
by the actuation of an active part through a physical link.
If the passive part can emulate nonlinear combination and
temporal integration of the indirect input signal, it can serve
to generate an input-dependent signal to an adjoining part
which should be actuated. This might allow us to regard
passive elements in a robotic system as a local controller.
Therefore, we investigated whether a spring network that
receive the indirect input through mechanical connection can
emulate nonlinear filters.

We used a two-joint model in whichN (= 16) springs are
placed with equal spacing around the perimeter of the links
connected by each joint (Fig 9). While the parameters of the
springs around lower joint are randomly set at the same range
as the ones on the previous experiments, the parameters of
the springs around upper joint are set so that they are affected
by input signals easily:k1 andd1 are randomly drawn from
[1, 0 × 103, 1.0 × 105] and k3 and d3 are randomly drawn
from [5.0 × 1011, 1.0 × 1012]. The same input signal shown
by Eq. (6) was applied for randomly-chosen four springs
around the upper joint with input weights. Since it turns
out that the computational performance depends much on
the distribution of the input weights, weightwin,i for i-th
spring was randomly drawn from:

win,i ∈ [0.0, 1.0] if N/2 ≥ i

win,i ∈ [−1.0, 0.0] otherwise.

The output of the system was computed as a sum of the
weighted lengths of all springs around the lower joint (blue

Fig. 9. An overview of the information processing in a multi-joint system
with mechanically-coupled springs. The input signals multiplied with input
weightswin are applied to some springs around the upper joint as external
forces. The output of the system is computed as a sum of all length of
springs around the lower joint multiplied with output weightswout.

spring in Fig 9). Note that the input signal is not directly
applied to springs that are used to compute the outputs of the
system. The input information was transferred to the springs
around the lower joint through the physical and mechanical
connection. The passive movement of the springs was used
to emulate the nonlinear filter.

We ran400 simulations, following the procedure described
in section III-A. The MSEs between desired outputs and
outputs of the adapted readout units were computed for the
2nd and 10th order system tasks. The averages of MSEs for
the 2nd and 10th order cases were1.12 × 10−3 and1.49 ×
10−2, respectively with standard deviations2.28×10−4 and
2.52×10−3. We shows the distributions of the MSEs for each
task and the result of the network with the best performance
in Fig. 8 and Fig. 10, respectively. The network show lower
performance than ones of one-joint cases. However, we can
see that a spring network can emulate nonlinear filters by
transmitting the input signal through mechanical connection,
compared with the result of simple linear regression shown
in Fig. 3.

IV. D ISCUSSION AND CONCLUSION

In classical robotic systems, redundant configuration of the
actuators were avoided to achieve precise control. However,
it has been reported that such properties make the control
tasks easier. A bi-articular muscle is a typical example
because it is suggested that they play an important role in
stiffness control [9] and jumping [4]. In biological systems,
each joint is controlled by the actuation of a lot of muscle
fibers, which are well-arranged in parallel or obliquely to
the long axis of the muscle [10]. The analogy between
musculoskeletal system and our system suggests that the re-
dundant configuration of biological muscles has a potential as
local computational resource. Furthermore, interestingly, the
system showed the best performance when the input signal
was applied so that it can drive the system in antagonistic
way. This might imply that biological configuration has high
computational capability.

However, we found, in the first experiment, that the current
structure cannot emulate Volterra series, while, theoretically



Fig. 10. The performance of nonlinear and temporal integration tasks with
the two-joint setup. The top figure shows the inputu(t), which consisted
of three sinusoidal functions. The other two figures show the performances
of the 2nd and 10th order filters, respectively. In each figure, the red line is
a target trajectory and the blue line is the output of the system.

speaking, the randomly-connected mass-spring network can
emulate with arbitrary precision any operators, which can
be approximated by a Volterra series [7]. This difference
might come from lack of local interactions between springs
in the proposed model because such interactions increase the
complexity of a network to be exploited for the emulation.
More complex structure inspired from biological systems
will help us understand what kind of configuration in a
biological system provides higher computational capability.

Another interesting point is that a mechanical link between
joints allows us to transfer input information fed into parts
of body to other parts. In biological system and robotic
one, active elements and passive one are often mixed. For
example, during quasi passive dynamic walking, while hip
and ankle joints are activated, knee joints would be passive.
We showed, in our second experiment, that the movement of
a part of the body driven by input signal enables a distant
part, which is passive, to compute an input-dependent signal.
This might suggest that physical constraints and compliant
body allow a central controller to transmit input information
to local controllers that are located in more distant parts from
the central one.

Although we did not discuss the movement of the system
in the paper, we should take it into account to make the
system serve as not only a generator of signal but also a
generator of movement to achieve a task. If the system driven
by a signal shows a meaningful movement, it can be engaged
in a movement task, computing control signal by itself. A
pattern generator like a central pattern generator (CPG) is a
possible application of such system: the system can show
periodic movement when we design the readout that can
output next state of a periodic input and then feed back its

output to the system instead of actual input. In the context
of reservoir computing, it has been already reported that this
kind of feedback loop enables a network to store persist
memory such as periodic pattern [11], [12]. The introduction
of feedback loop will allow the system to perform periodic
movement with computing its own control signal.

In this paper, we demonstrated that the network of me-
chanically coupled springs inspired by musculoskeletal sys-
tem has computational capability to emulate different nonlin-
ear combinations of temporally integrated information. Such
network was still able to maintain computational capability
even when a further limitation on degrees of freedom was
added to the system. We also showed that, in experiment
on a two-joint system, thanks to mechanical connection
between the joints, a distant part of a compliant body
can serve as a computational device driven by the indirect
input. These results suggested that each joint in compliant
physical body has a potential as computational device. We
will introduce a feedback element into our system to design
a pattern generator that can perform meaningful movement
with computing its own control signal. Experiments with real
robots will be also conducted to verify the results.

V. ACKNOWLEDGMENTS

This research was funded in part by the European Com-
munity’s Seventh Framework Programme FP7-ICT-248311
(AMARSi) and FP7-ICT-231688 (Locomorph) and the Swiss
National Science Foundation through the National Centre of
Competence in Research Robotics.

REFERENCES

[1] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki,
and K. Fujimura, “The intelligent asimo: System overview and inte-
gration,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, vol. 3. IEEE, 2002, pp. 2478–2483.

[2] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal
robots based on passive-dynamic walkers,”Science, vol. 307, no. 5712,
p. 1082, 2005.

[3] F. Iida, “Cheap design approach to adaptive behavior: Walking and
sensing through body dynamics,” inInternational symposium on
adaptive motion of animals and machines. Citeseer, 2005.

[4] K. Hosoda, Y. Sakaguchi, H. Takayama, and T. Takuma, “Pneumatic-
driven jumping robot with anthropomorphic muscular skeleton struc-
ture,” Autonomous Robots, vol. 28, no. 3, pp. 307–316, 2010.

[5] C. Paul, “Morphological computation:: A basis for the analysis of
morphology and control requirements,”Robotics and Autonomous
Systems, vol. 54, no. 8, pp. 619–630, 2006.

[6] R. Pfeifer, M. Lungarella, and F. Iida, “Self-organization, embodiment,
and biologically inspired robotics,”Science, vol. 318, no. 5853, p.
1088, 2007.

[7] H. Hauser, R. Pfeifer, J. A. Ijspeert, and W. Maass, “A theoretical
foundation for morphological computation,”Biological Cybernetics,
(submitted).

[8] M. Lukosevicius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,”Computer Science Review, vol. 3,
no. 3, pp. 127–149, 2009.

[9] M. Kumamoto, T. Oshima, and T. Yamamoto, “Control properties
induced by the existence of antagonistic pairs of bi-articular muscles–
mechanical engineering model analyses,”Human Movement Science,
vol. 13, no. 5, pp. 611–634, 1994.

[10] A. Freivalds,Biomechanics of the upper limbs: mechanics, modeling,
and musculoskeletal injuries. CRC, 2004.

[11] W. Maass, P. Joshi, and E. Sontag, “Computational aspects of feedback
in neural circuits,”PLOS Comp. Bio., vol. 3, no. 1, pp. 1–20, 2007.

[12] J. Li and H. Jaeger, “Minimal energy control of an esn pattern
generator,” Jacobs University, Tech. Rep. 26, 2011.


